Section One: Calculator - free

(50 marks)

This section has **six (6)** questions. Answer all questions. Write your answers in the spaces provided.

Working time: 50 minutes

Question 1 (7 marks)

(a) Simplify
$$\frac{3}{x^2 - 4} - \frac{5}{x + 2}$$
 (3)
$$= \frac{3 - 5(x - 2)\nu}{(x + 2)(x - 2)\nu}$$

$$= \frac{3 - 5x}{x^2 - 4}$$

(b) Simplify
$$\frac{3m^2 - 6m - 24}{m^2 - 5m + 4} \div \frac{m^2 - m - 6}{m^2 - 3m}$$
 (4)
$$\frac{3(m - 4)(m + 2)}{(m / 4)(m - 1)} \times \frac{m(m - 3)}{(m / 3)(m + 2)} \times \frac{m(m - 3)}{(m / 3)(m + 2)} \times \frac{m / 3}{m / 3}$$

Question 2 (9 marks)

(a) Sketch the graph of the derivative function (for the function shown) on the axes provided. (2)

shape V all below oc-axis V

(b) Differentiate the following with respect to x.

(i)
$$f(x) = \frac{-x}{x^2 + 1}$$
 (express in simplest form) (3)

$$f'(x) = \frac{-1(x^{2}+1)-2x(-x)}{(x^{2}+1)^{2}} - 1 \text{ per error}$$

$$= -\frac{x^{2}-1+2x^{2}}{(x^{2}+1)^{2}}$$

$$= \frac{x^{2}-1}{(x^{2}+1)^{2}}$$

(ii)
$$g(x) = (x+1)^2 e^{x^2}$$
 (do not simplify) $g'(x) = 2(x+1)e^{x^2} + 2x e^{x^2}(x+1)^2$

Question 2 (continued)

(c) Given the derivative function, sketch the graph of the function on the axes provided. (2)

(4)

Question 3 (12 marks)

Consider the curve $y = x^3 - 2x^2 - 4x + 3$

(a) It is claimed that the tangent to the curve at the point where x = 1 passes through the point (3, 8). Is this claim valid? Justify your answer. (4)

$$y' = 3x^{2} - 4x - 4v$$

at $x = 1$ $y = -2$ J_{x}

at $x = 1$ $y' = -5$ J_{x}

$$y = -5x + c$$

subst $(1, -2)$

$$-2 = -5(1) + c$$

$$c = 3$$

$$y = -5x + 3v$$

subst $x = 3$

$$y = -15 + 3 = -12 \neq 8$$

$$y = -15 + 3 = -12 \neq 8$$

(b) Determine the value of x for which y is a maximum.

$$max when 3x^{2} - 4x - 4 = 0$$

$$(3x+2)(x-2) = 0$$

$$x = -\frac{2}{3} \text{ or } x = 2$$

$$y'' = 6x - 4$$

$$1f \quad x = -\frac{2}{3} \quad y'' \neq 0 : max \qquad \text{tests}$$

$$both$$

$$1f \quad x = 2 \quad y'' > 0 : min \qquad points$$

$$... max when $x = -\frac{2}{3} \quad \text{v}$$$

(4)

Question 3 (continued)

(c) Solve the following system of equations.

$$x - 2y + 4z = 2$$
 ①
 $2x + y + 3z = -1$ ②
 $-x - y - 2z = 0$ ③

$$6 - 7$$
 $-y = 0$
 $y = 0$

Subst
$$y=0$$
 into (5)

$$Z=1$$

$$Subst y=0, Z=1 \text{ into } (3)$$

$$-x-2=0$$

$$x=-2$$
 $\checkmark \gamma$

Question 4 (10 marks)

(a) Determine c given that the graph of $f(x)=cx^2+x^{-2}$ has a point of inflection at (1, f(1)).

$$f'(x) = 2cx - 2x^{-3}$$
 $f''(x) = 2c + 6x^{-4}$

Let $2c + \frac{6}{x^{4}} = 0$

when $x = 1$ $2c + 6 = 0$
 $c = -3$

Question 4 (continued)

- The functions f(x) and g(x) are defined as follows (b) $f(x) = x^2 - 4$ and $g(x) = \sqrt{x-5}$
 - Determine the simplified expressions for f[g(x)] and g[f(x)]. (i) (3) $f(g(x)) = (\sqrt{x-5})^2 - 4$ = x - 5 - 4 = x - 9

$$g(f(x)) = \sqrt{x^2 - 4 - 5}$$

$$= \sqrt{x^2 - 9} \quad \checkmark$$

Determine the range of f[g(x)]. (ii)

R Range y y >, -4 y ∈ R 35 → 30

(2)

(2)

Determine the domain of g[f(x)]. (iii)

$$x^{2}-4 \geqslant 5$$

$$x^{2} \geqslant 9$$

$$x^{2}-4 \gg 5$$

$$x^{2} \gg 9$$
domain
$$x: x \gg 3 \text{ or } x \leq -3 \quad x \in \mathbb{R}$$

-1 no +c

Question 5

(7 marks)

(a) Determine
$$\int (1+3x^{2})(x-2) dx$$

$$= \int (3x^{3}-6x^{2}+x^{2}-2) dx$$

$$= \frac{3x^{4}}{4} - 2x^{3} + \frac{x^{2}}{2} - 2x + C$$
(3)

(b) Determine
$$\int 4x^3 (3x^4 - 5)^7 dx$$
 (2)

$$= \frac{1}{3} \int 12x^3 (3x^4 - 5)^7 dx \qquad f(x) = 3x^4 - 5 f'(x) = 12x^3$$

$$= \frac{1}{3} \frac{(3x^4 - 5)^8}{8} + c$$

$$= \frac{(3x^4 - 5)^8}{8^4} + c$$

(c) Determine
$$\int 12x e^{x^2} dx$$

$$= 6 \int 2x e^{x^2} dx$$

$$= 6 e^{x^2} + c$$

$$(2)$$

$$f(x) = x^2$$

$$f'(x) = 2x$$

Question 6 (5 marks)

f(x) is defined such that $\int_{-3}^{6} f(x) dx = 24$ and $\int_{2}^{6} f(x) dx = 36$

(a) Find

(i)
$$\int_{-3}^{2} f(x)dx = 24 - 36$$

$$= -12 \checkmark$$

(ii)
$$\int_{-3}^{2} (4f(x)+3) dx$$

$$= \int_{-3}^{2} 4f(x) dx + \int_{-3}^{2} (3) dx$$

$$= 4(-12) + [3x]_{-3}^{2}$$

$$= -48 + (6 - -9)$$

$$= -33$$
(3)

(b) Sketch a possible graph of y=f(x) for $-3 \le x \le 6$. Your graph should display the relative areas of important regions but you do not need to draw this graph to scale. (1)

Section Two: Calculator -- assumed

(100 marks)

This section has **ten (10)** questions. Answer all questions. Write your answers in the spaces provided.

Working time: 100 minutes

Question 7 (7 marks)

The graph of g'(x) is given below.

- (a) What can be said about the gradient of the function g(x) between x = -3 to x = 1?

 (1)
- (b) When does the function, g(x) have a negative gradient? (2) $1 < x < 3 \qquad (5)$
- (c) State an equation for the tangent to the graph of g(x) at x = 3. (1) $y = k, \quad k \quad a \quad constant$
- (d) Find the value of x at which g(x) has a relative maximum for $-3 \le x \le 4$ (1) x = 1
- (e) Find the x-coordinate of each point of inflection of the graph of g(x) for $-3 \le x \le 4$ x = -1.5 (2) x = 2

(2)

Question 8 (12 marks)

(a) Events A and B are such
$$P(A) = \frac{1}{2}$$
, $P(B) = \frac{7}{12}$ and $P(\overline{A \cup B}) = \frac{1}{4}$
Show that events A and B are not mutually exclusive. (3)

$$P(AUB) = \frac{3}{4}$$

$$P(ADB) = P(A) + P(B) - P(AUB)$$

$$= \frac{1}{3} + \frac{7}{4} - \frac{3}{4} = \frac{1}{3}$$

$$= \frac{1}{3} \times \frac{1}{3}$$

$$= \frac{1}{3} \times \frac{1}{3} = \frac{1}{3}$$

(b) A toy robot has 3 main components (X, Y and Z) which are manufactured separately and then assembled together. Previous random testing of components has shown that:

P(X defective) = 0.002, P(Y defective) = 0.015, P(Z defective) = 0.003

If a toy robot is selected at random, what is the probability that:

(i) only component Y is defective, (2)
$$0.998 \times 0.015 \times 0.997$$

$$= 0.01492509$$

(ii) at least one of its components are defective.

Question 8 (continued)

(c) If X and Y are independent events and P (X) = 0.75 and P(X \cup Y) = 0.875, find

(i)
$$P(Y)$$

If independent then
 $P(x) \cdot P(Y) = P(X \cap Y)$
 $0.75 P(Y) = P(X \cap Y)$
 $P(X \cup Y) = P(X) + P(Y) - P(X \cap Y)$
 $0.875 = 0.75 + P(Y) - 0.75 P(Y)$
 $0.125 = 0.25 P(Y)$
 $P(Y) = 0.5$

(ii)
$$P(Y|X) = 0.5 \checkmark$$
 (1)

(iii)
$$P(X|Y') = 0.75 \checkmark$$
 (1)

(12 marks) Question 9

It takes 12 hours to drain a storage tank by opening the valve at the bottom. The (a) depth, y, of fluid in the tank t hours after the valve is opened is given by

$$y = 6\left(1 - \frac{t}{12}\right)^2 \text{ metres.}$$

Section Two

(i) Find the rate $\frac{dy}{dt}$ m/hour at which the tank is draining at time, t. (2)

$$\frac{dy}{dt} = 12 \left(1 - \frac{t}{12} \right)^{1} \cdot -\frac{1}{12}$$

$$= - \left(1 - \frac{t}{12} \right)$$

$$= \frac{t}{12} - 1$$

(ii) When is the fluid in the tank falling fastest and slowest? What are the values of $\frac{dy}{dt}$ at these times? (3)

$$0 \le t \le 12$$

$$t = 12 \quad minimum, slowest$$

$$V \quad \frac{dy}{dt} = 0 \quad V$$

fastes+
$$at t = 0 \qquad \frac{dy}{dx} = -1 \qquad V$$

(2)

(2)

Question 9 (continued)

(c) If $y = kx^3$ for some constant k, use the incremental formula to establish the percentage increase in x required to yield a 15% increase in y. (3)

$$\delta y = \frac{dy}{dx} \delta x$$

$$0.15y = 3kx^{2} \delta x$$

$$0.15 kx^{3} = 3kx^{2} \delta x$$

$$\delta x = 0.05 x$$

$$5\% change in x required v$$

(d) A company sells goods such that its revenue, in dollars, from selling x items is given by the equation,

$$R(x) = 5x(20x - x^{2})$$

$$= /OO \times^{2} - 5x^{3}$$

(i) Determine the marginal revenue when x = 10.

$$R'(x) = 200x-15x^{2}V$$
 $R'(10) = 500$
... marginal revenue is \$500 V

(ii) What does marginal revenue represent?

Question 10 (7 marks)

The Australian Kayak team must select 4 elite rowers from 14 possible contenders to be the new 'Awesome Foursome'.

Mike is the singles kayak champion and Geoff is the runner up champion.

- (b) What is the probability that of the 4 rowers chosen at random:
 - (i) Mike is included? $\frac{\binom{1}{1}\binom{13}{3}}{\binom{14}{4}} = \frac{286}{1001} = 0.2857$
 - (ii) Mike and Geoff are included? (1)

$$\frac{\binom{2}{2}\binom{12}{2}}{\binom{14}{4}} = \frac{66}{100!} = 0.0659$$

(iii) Mike or Geoff is selected? (2) $\frac{286}{1001} + \frac{286}{1001} - \frac{66}{1001} = \frac{506}{1001} = 0.5055$

or
$$(\frac{3}{3})(\frac{12}{4}) = 0.5055$$

(c) If Mike is selected for the Kayak team, what is the probability that Geoff is also selected? (2)

$$\frac{\frac{66}{1001}}{\frac{278}{1001}} \sqrt{=\frac{66}{286}} = 0.2307.$$

Question 11 (12 marks)

(a) The function f(x) is differentiable for all $x \in R$ and satisfies the conditions

$$f'(x) < 0$$
 where $x < 2$

$$f'(x) = 0$$
 where $x = 2$

$$f'(x) = 0$$
 where $x = 4$

$$f'(x) > 0$$
 where $2 < x < 4$

$$f'(x) > 0$$
 where $x > 4$

(i) Draw a sketch of this function f(x). (3)

(4)

Question 11 (continued)

(b) The curve $y=e^{2x}$ and $y=e^{-x}$ intersect at the point (0, 1) as shown in the diagram.

Find the area enclosed by the curves and the line x=2. Leave your answer in terms of e.

$$\int_{0}^{2} (e^{2x} - e^{-x}) dx$$

$$= \left[\frac{e^{2x}}{2} - (-e^{-x}) \right]_{0}^{2}$$

$$= \frac{e^{4}}{2} + e^{-2} - (\frac{1}{2} + 1)$$

$$= \frac{e^{4}}{2} + \frac{1}{e^{2}} - \frac{3}{2}$$

Question 11 (continued)

- State the resulting equation when the graph of $y = e^x$ undergoes the following (c) transformations in succession: (3)
 - horizontal dilation of factor $\frac{1}{2}$
 - reflection about the y-axis
 - vertical translation 5 units in the direction of the negative y-axis
 - horizontal translation 3 units in the direction of the positive x-axis
 - vertical dilation of factor 2

cal dilation of factor 2

$$y = e^{-3x}$$

$$y = e^{-3x}$$

$$y = e^{-3x} - 5$$

$$y = e^{-3(x-3)} - 5$$

$$y = 2(e^{-3(x-3)} - 5)$$

$$y = 2e^{-3(x-3)} - 10$$

- The point (3, $0.5e^4$) lies on the curve of $y = 0.5e^{x+1}$. Identify the subsequent location (d) of this point if the transformations listed below are applied in succession.
 - reflection about the x-axis
 - horizontal translation 7 units in the direction of the negative x-axis
 - vertical translation 3 units in the direction of the positive y-axis
 - reflection about the y-axis

Question 12 (9 marks)

Research has been conducted to determine the benefits of a flu vaccine before winter for adults over 65. The following information has been obtained:

60% of the target population (i.e. adults over 65) had the flu vaccine and of these 22% actually developed the flu, 3% developed a chest infection and the remainder had no flu-like symptoms over the winter.

Of those who did not have the flu vaccine 12% developed a chest infection.

The proportion of those studied who did not have the vaccine and had no flu-like symptoms over the winter was 0.096.

14% of all those who developed a chest infection also got pneumonia.

(Note that in this same sample no one developed both the flu and a chest infection)

(a) Draw a tree diagram to represent the above information. (4)

- (b) For a randomly chosen person from this study determine the probability that:
 - (i) the person developed the flu if they did not have the flu vaccine. (1)

(ii) the person had the flu vaccine and developed pneumonia. (1)

$$0.6 \times 0.03 \times 0.14 = 0.00252$$

(iii) the person had the vaccine if they developed pneumonia. (3)

$$\frac{0.00252 \, V}{0.00252 \, + 0.4 \times 0.12 \times 0.14} = 0.2727$$

Question 13 (12 marks)

Consider the letters of the word POLICE.

How many arrangements are there of these 6 letters (without repetition) if

$$\frac{5}{5} + \frac{3}{3} + \frac{2}{5!} + \frac{3}{3} = 360$$

(c) the vowels must be separated by the consonants (ie 2 vowels must not be together)?

$$V \subset V \subset V \subset$$
3! \times 3! \times 2 = 72

Now suppose that 4 letters are chosen from this word and that the **order of selection is unimportant.**

(d) How many different 4 letter groups are possible if

(e) Determine the probability that in the four letter selection that is made, whenever O appears, E also appears. (4)

$$\frac{\binom{2}{2}\binom{4}{2} + \binom{3}{4}\binom{4}{4} + \binom{1}{0}\binom{1}{3}\binom{4}{3}}{\binom{6}{4}} - \frac{1}{16}$$

Question 14 (11 marks)

(a) A dressmaker wishes to cut a section of cloth from a piece of material measuring 2 metres by one metre. The curved edges of the piece of cloth to be removed are defined as being between the following equations:

$$y_1 = 0.5x$$
 and $y_2 = x^3 - 3.1x^2 + 2.7x$

- (i) Label the 3 points of intersection with co-ordinates. (1)
- (ii) Write an integral that would give the area of region bound by the two functions. (2)

$$A = \int (x^3 - 3 \cdot 1)x^2 + 2 \cdot 7x - 0 \cdot 5x) dx + = \int (x^3 - 3 \cdot 1)x^2 + 2 \cdot 7x - 1 dx$$

$$= \int (x^3 - 3 \cdot 1)x^2 + 2 \cdot 7x - 1 dx + 2 \cdot 7x - 1 dx$$

$$= \int (x^3 - 3 \cdot 1)x^2 + 2 \cdot 7x - 1 dx + 2 \cdot 7x - 1 dx$$
error

(iii) Calculate the area of the cloth removed, correct to 2 decimal places. (2)

$$A = 0.51m^2$$
 / -\frac{1}{2} units

Question 14 (continued)

- (b) A group of anthropologists found that human tooth size is continuing to decrease, such that $\frac{dS}{dt} = kS$. In Northern Europeans, for example, tooth size reduction now has a rate of 1% per 1000 years.
 - (i) If *t* represents time in years and *S* represents tooth size, find the value of *k*, rounded to 8 decimal places. (2)

(ii) In how many years will human tooth size be 90% of their present size? (2)

$$0.9 = e^{-0.00001005t}$$

$$t = 10483.3 \text{ years}$$

$$(t = 10483.6 \text{ using (i)})$$

(iii) What will be our descendant's tooth size 20 000 years from now? (2) (as a percentage of our present tooth size)

$$S = Soe^{-0.00001005} \times 20000$$

$$= 0.8179$$

$$= 81.79\%$$

Question 15 (8 marks)

(a) For the function y = f(x) below

It is known that

$$\int_{-3}^{-1} f(x) dx = -75$$

$$\int_{-1}^{2} f(x) dx = 20$$

The area between the curve and the x-axis from x=-1 to x=2 is 80 square units.

Use the information above and mathematical reasoning to determine the value of each of the following.

(i)
$$\int_{-1}^{0} f(x) dx$$
 $3 - A = 20$ (3)

$$A + B = 80$$

$$A = 30$$

$$B = 50$$

(ii) the area between the curve and the
$$x$$
-axis from $x = -3$ to $x = 0$ (1)
$$75 + 30 = 105 \quad \checkmark$$

Question 15 (continued)

(iii)
$$\int_{-3}^{2} f(x) dx$$
 (1)
$$= -75 - 30 + 50$$

$$= -55 \checkmark$$

(b) The graph of a function f(x) consists of a semi-circle and two line segments as shown.

Find the exact value of
$$\int_{-3}^{4} f(x) dx$$
 (3)

$$A = \frac{1}{2} \times \pi \times 2^{2} = 2\pi$$

$$B = \frac{1}{2} \times 2 \times 1 = 1$$

$$C = \frac{1}{2} \times 1 \times 1 = \frac{1}{2}$$

$$\omega$$

$$\int_{-3}^{4} f(x) dx = A + (-B) + c$$

$$= 2\pi - 1 + \frac{1}{2}$$

$$= 2\pi - \frac{1}{2}$$

Question 16 (10 marks)

A piece of wire 8cm long is cut into two unequal parts. One part is used to form a rectangle that has a length three times its width. The other part of the wire is used to form a square.

(a) If the width of the rectangle is x units, show that the equation that will give the sum of the areas of the rectangle and the square in terms of x is: (5)

$$A = 7x^{2} - 8x + 4$$

$$3x$$

$$x = 8x$$

$$\frac{8-8x}{4} = 2-2x - \frac{1}{4}$$

$$= 3x(x) + (2-2x)^{2}$$

$$= 3x^{2} + 4 - 8x + 4x^{2}$$

$$= 7x^{2} - 8x + 4 \quad \text{as required}$$

(b) Using Calculus, find the length of each part of the wire when the sum of the areas is a minimum. (5)